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Abstract

Quantum solitons or polarons are supposed to play a crucial role in the electric
conductivity of polyacetylene, in the intermediate doping regime. We present
an exact fully quantized calculation of the quantum soliton conductivity in
polyacetylene and show that it vanishes exactly. This is obtained by applying
a general method of soliton quantization, based on order–disorder duality, to
a Z(2)-symmetric complex extension of the TLM dimerization effective field
theory. We show that, in this theory, polyacetylene solitons are sine-Gordon
solitons in the phase of the complex field.

PACS numbers: 11.10.Kk, 11.10.Lm, 61.82.Pv

1. Introduction

The discovery of a tremendous increase in the electrical conductivity of trans-polyacetylene,
when doped with either halogens or alkalis [1], was a breakthrough of far reaching
consequences in physics and chemistry. The fact that the trans-isomer occurs in two
degenerate species opens the possibility of occurrence of soliton defects interconnecting them.
This fact unfolded an enormous range of possibilities interconnecting many areas, including
mathematics, theoretical and experimental physics. The subject has remained on the focus of
interest until recently [2]. It actually happens that such topological excitations are produced in
the process of doping [3, 4]. The properties of this kind of soliton had been studied formerly
in [5]. Pure polyacetylene has one active π -electron per site and is a Peierls insulator, due to
the electron–lattice interaction. It has been found that in the presence of a soliton, treated at
the classical level, electron states are created in the middle of the gap, hence it is energetically
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favorable for the extra doped electrons to create solitons and occupy the midgap states rather
than going into the conduction band.

From the very beginning the existence of three different doping regimes became clear.
Firstly, for low doping concentrations (small compared to 1%) the above picture of classical
solitons works very well. The solitons are pinned by the dopant atoms, which create them
with the corresponding midgap states. The conductivity is thermally activated, corresponding
to a transition from the midgap to the conduction band states and can be understood quite
similarly to the conductivity in semiconductors. Secondly, for high concentration of dopants
(5% to 10%) the conduction regime is clearly metallic, with an unfilled conduction band, and
can be thereby understood. Thirdly, there is an intermediate regime of dopant concentration,
of the order of 1%, in which none of the previous models works. In this regime, the solitons
become dynamic carriers of charge and a full quantum treatment of these excitations becomes
unavoidable since the soliton mass is of the same order of the electron mass [6].

The purpose of this work is to apply a general method of quantization of soliton excitations
[7], in order to describe the conductivity of polyacetylene in the intermediate regime. In order
to do that, however, the following obstacle must be removed. From the mathematical point of
view, the soliton is a topologically nontrivial configuration of the dimerization—or phonon—
field, which describes the lattice degrees of freedom. This, of course, is a real field, whose
effective potential has Z(2)-symmetry and two degenerate minima that correspond to the two
species of trans-polyacetylene. The above method of soliton quantization, however, only
applies to complex fields, in the case of a multiplicative symmetry such as Z(2) [7].

Therefore, in order to describe the quantum solitons of the system and specifically their role
in the electric conduction in the intermediate doping regime, we propose a Z(2)-symmetric
complex extension of the effective potential for the dimerization field. This has the same
topological properties as the former and, consequently should not alter substantially the
soliton physics.

In section 2, we describe the method of soliton quantization in a theory of a complex
scalar field with Z(N) symmetry and show that its soliton excitations are sine-Gordon (SG)
solitons in the phase of the complex scalar field. In section 3, we propose the N = 2 version
of this theory as the complex extension of the effective theory for the dimerization field in
polyacetylene. In section 4, we derive an exact series expression for the quantum soliton
current–current correlation function and, out of it, obtain the soliton conductivity. We show
that this exactly vanishes. In conclusion, we have an exact demonstration at a full quantum
level, that dynamic solitons are actually not the carriers of charge in polyacetylene. Rather,
polarons, which are basically soliton–antisoliton bound states should be responsible for the
transport of charge in the intermediate doping regime of polyacetylene.

2. Quantum phase solitons in theories with a Z(N ) symmetry

We start by considering the following theory describing a complex scalar field in (1+1)-
dimensions,

L = ∂μφ∗∂μφ + γ (φ∗N + φN) − η(φ∗φ)M, (1)

where N and M are integers and γ and η are real parameters. This is invariant under the
Z(N) transformation: φ(x, t) → ei 2π

N φ(x, t). The choice γ > 0 implies the spontaneous
breakdown of the Z(N) symmetry. In this case, the theory will have degenerate vacua and
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soliton excitations. A full quantum theory of these solitons was developed in [7–9]. This
includes an explicit expression for the soliton creation operator, namely

μ(x) = exp

{
−2π

N

∫ ∞

x,C

dξν εμνφ∗(ξ)
↔
∂ μφ(ξ)

}
, (2)

and a general expression for its local Euclidean correlation functions [7–9],

〈μ(x)μ†(y)〉 = N
∫

Dφ∗ Dφ exp

{
−

∫
d2z[(Dμφ)∗(Dμφ) + V (φ∗, φ)]

}
, (3)

where

Dμ = ∂μ − iαAμ, Aμ(z, C) =
∫ y

x,C

dξν εμνδ2(z − ξ). (4)

In the above expression, V is the potential of an arbitrary Lagrangian and the integral is
taken along an arbitrary curve C, connecting x and y. It can be shown, however, that (3) is
independent of the chosen curve.

We are going to show in what follows that these quantum solitons may be identified with
SG quantum solitons in the phase of the field φ.

Using the polar representation for φ, namely, φ(x, t) = ρ(x, t) eiθ(x,t), where ρ and θ are
real fields, we can rewrite the above Lagrangian as

L = ∂μρ∂μρ + ρ2∂μθ∂μθ + 2γρN cos Nθ − ηρ2M. (5)

In what follows, we will be interested in the topological properties of the theory. As we
shall argue, these are not affected by ρ fluctuations, hence, from now on we will make the
constant ρ approximation,

ρ(x, t) = ρ0, ρ0 constant. (6)

Using this in (5) we get

L = ρ2
0∂μθ∂μθ + 2γρN

0 cos Nθ − ηρ2M
0 , (7)

which is a SG Lagrangian in θ .
We conclude that, in the constant-ρ approximation, the theories given by (1) will present

SG solitons in the phase of the complex scalar field φ. The corresponding topological current
will be

Jμ = εμν∂νθ, (8)

which is associated with the topological charge operator

Q =
∫ ∞

−∞
dx ′J 0 =

∫ ∞

−∞
dx ′ ∂x ′θ(x ′, t) = θ(+∞, t) − θ(−∞, t). (9)

We see that topological properties are related to large θ fluctuations and, therefore, the
constant ρ approximation should not interfere in such properties.

In order to explicitly confirm the fact that the soliton operators introduced in [7–9] are
indeed creation operators of quantum solitons in the phase of the field φ, let us explicitly
evaluate the commutation relation between the quantum soliton creation operator and the
topological charge.

Using the fact that the momentum canonically conjugated to θ is

πθ = ∂L
∂θ̇

= 2ρ2θ̇

3
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we can write the soliton operator for theory (1) in terms of polar fields as [7–9] (in Minkowski
space)

μ(x, t) = exp

{
−i

2π

N

∫ ∞

x

dξ1 πθ(ξ1, t)

}
. (10)

Observe that this is nothing but the Mandelstam creation operator of quantum solitons in
the SG model [10], as it should. Then, using canonical commutation relations we readily find

[Q, μ] =
{
−i

2π

N

∫ ∞

−∞
dx ′ ∂x ′

∫ ∞

x

dξ1[θ(x ′, t), πθ (ξ1, t)]

}
μ = 2π

N
μ. (11)

Equation (11) implies that the operator μ creates eigenstates of the topological charge
Q, with eigenvalue 2π/N , thus proving that the quantum solitons occurring in the theory
described by (1) are indeed phase solitons. Correlation functions of these quantum soliton
excitations have been calculated elsewhere [11–13]. In section 4, we will show that the relevant
quantum correlators for the calculation of the conductivity will be the soliton current–current
correlators.

3. The case N = 2: a model for polyacetylene

In this section, we are going to propose a phenomenological theory for polyacetylene that will
enable us to compute quantum soliton correlation functions and in particular the correlation
functions of quantum solitonic current operators. As we shall see the standard field theory
model for this polymer unfortunately does not allow the application of the method of
soliton quantization described in the previous section. For this reason, we will propose a
phenomenological alternative.

Polyacetylene is described by the Su–Schrieffer–Heeger (SSH) model [3, 4], whose
field theory version is the Takayama–Lin–Liu–Maki (TLM) model [14], described by the
Hamiltonian

HT LM =
∫

dx �†
s (x)[− ih̄vF σ3∂x + �(x)σ1]�s(x)

+ (2πh̄vF λ)−1
∫

dx
[
�̇2(x)/�2

0 + �2(x)
]
. (12)

In the above expression, �s(x) is a two-component Dirac fermion field, associated with
the π -electrons and �(x) is a real scalar field—the dimerization field—associated with the
lattice degrees of freedom, namely, the phonons. Furthermore, σi are the Pauli matrices, vF

is the Fermi velocity, λ is the dimensionless electron–phonon coupling constant and �0 is the
bare optical-phonon frequency.

Integrating over the fermion field in the previous expression, we obtain an effective theory
for the phonon field �(x), whose potential is a Z(2) symmetric double well [15–17]. The
two degenerate minima of this potential correspond to the two degenerate dimerizations of
trans-polyacetylene. The equivalent calculation has also been performed within the SSH model
[3, 4], also leading to a degenerate double-well effective potential for the dimerization variable.

The double-well potential for the effective dimerization field implies the existence of
soliton excitations in the theory. It has been shown that these, indeed, are introduced by
doping polyacetylene with halogen or alkali atoms [1].

As we have argued in the introduction, in the regime of intermediate doping, a full quantum
treatment of the soliton excitations is unavoidable. Hence, one would be naturally inclined to
use the method of soliton quantization for theories with a Z(N) symmetry, described in the
previous section, for the case N = 2. Nevertheless, one immediately realizes that the method

4
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Figure 1. Z(2) symmetric potential, equation (14), for γ = 900 and η = 1. Note the
presence of two minima at (x, y) = (ρ cos θ, ρ sin θ) = (−30, 0) and (30, 0), corresponding
to (ρ, θ) = (30, π) and (30, 0).

(This figure is in colour only in the electronic version)

is not applicable for a real field such as the dimerization field �(x). Indeed, for a real field the
exponent of the soliton operator (2) vanishes, making μ trivial and the soliton correlator (3) no
longer makes sense, since we cannot couple the external field Aμ to a real field. Furthermore,
for a real field, θ = 0, hence the topological current and the respective topological charge
cannot be defined as in (8) and (9). The above method of soliton quantization, in the case of a
multiplicative symmetry [7], only applies to complex fields.

In order to conciliate this fact with the knowledge that the effective theory for the real
�(x)-field is a degenerate double well with a Z(2) symmetry, we propose a complex extension
φ(x) of the �(x)-field, governed by the Lagrangian (1) with N = M = 2. The corresponding
potential is

V (φ∗, φ) = −γ (φ∗2 + φ2) + η(φ∗φ)2, (13)

or, in terms of polar fields,

V (ρ, θ) = −2γρ2 cos 2θ + ηρ4. (14)

This potential is represented in figure 1.
As we can see, there are two degenerate minima at

(ρ0, θ0) =
⎧⎨
⎩

(√
γ

η
, 0

)
(√

γ

η
, π

) (15)

where the potential has the value V (ρ0, θ0) = −γ 2/η. Applying, then, the constant ρ

approximation

ρ(x, t) 	 ρ0 =
√

γ

η
(16)

and adding γ 2/η we get the following SG potential for the phase field θ ,

V (θ) = 2γ 2

η
(1 − cos 2θ). (17)
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The associated classical solitonic excitations will be

θ(x) = ±2 arctan exp[
√

γ (x − x0)], (18)

where the plus and minus signs correspond respectively to a soliton (θs(x − x0)) and an
anti-soliton in the phase of the φ-field. We see that

lim
x→−∞ θs(x − x0) = 0 and lim

x→∞ θs(x − x0) = π, (19)

namely, the phase soliton connects the minima of the potential (14), when ρ = √
γ /η.

The actual potential for the dimerization field �(x) and the Z(2)-symmetric complex
potential for the field φ, given by (14), both possess the same topology, related to the Z(2)-
symmetry. It is therefore reasonable to expect the same topological properties in both theories,
especially those concerning solitons. We may adjust the parameters in such a way that the
minima of the real field potential coincide with those of the complex one.

What we are doing is quite similar to what is done when we use complex functions in
order to describe the EM field. The physical E and B fields will correspond to the real part
thereof. The dimerization field � of the TLM model is the real part of our φ. As we know,
for the polyacetilene soliton, we have the �-field varying from −�0 to �0 in between the two
minima.

A SG soliton in theta would have the phase of the φ field varying from π to 0, implying φ

would vary between −ρ0 and ρ0. Thus, identifying ρ0 with �0, we can figure out the relation
between the sine-Gordon solitons of our model and the polyacetylene solitons: the real part
of the complex field φ for the configuration having a SG soliton in its phase will be in the
same topological class as the φ4-like soliton of polyacetylene. Since for each SG soliton there
is a soliton in polyacetylene we may identify the SG-soliton current with the polymer soliton
current. We are going to use, therefore, this complex extension in order to study the quantum
properties of the soliton excitations by means of the method of soliton quantization described
in the previous section. We will use, in particular, the SG soliton current for calculating the
conductivity.

4. The quantum soliton current correlator and conductivity

In this section, we are going to obtain an exact series expression for the soliton dc-conductivity
in our model for polyacetylene. For this purpose, the starting point is the well-known Kubo
formula [18],

σ ij
s = lim

ω→0
lim
k→0

1

ω
Im[〈J iJ j 〉ret(ω, k)], (20)

where 〈J iJ j 〉ret(ω, k) is the retarded, Minkowski space, correlation function of the spatial
component of the soliton current operator Jμ given by (8).

We want to evaluate the above current–current correlator within our field theory model
for polyacetylene. The strategy will be to derive a generating functional for such current
correlators in our field theory model. For this purpose, we introduce the identity

1 =
∫

DJμ δ[Jμ − εμν∂νθ ]

=
∫

DJμ Dλμ exp

{
i
∫

d2z(Jμ − εμν∂νθ)λμ

}
, (21)

6
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in the Euclidian vacuum functional associated with the Lagrangian (7), obtaining

Z = Z−1
0

∫
DJμ DλμDθ exp

{
− 1

h̄vS

∫
d2z

[
ρ2

0∂μθ∂μθ

− 2γρN
0 cos Nθ − ih̄vS(J

μ − εμν∂νθ)λμ

]}
, (22)

where we used expression (8) for the soliton current. Note that in the above expression, we no
longer make h̄ = c = 1. Actually, since the φ-field theory replaces the effective theory for the
phonon field � in the TLM model, we substitute c for vS , the speed of sound in the polymer.

We now integrate over θ and λμ, thereby obtaining the partition function expressed as the
functional integral of the exponential of an effective Jμ action [19]. The θ integral may be
done by the usual expansion in powers of the cosine term [20], or equivalently, in powers of
ρN

0 . The resulting functional integrals, in both θ and λμ are quadratic and the final result is

Z = N
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi

∫
DJμ exp

{
−1

2

∫
d2z d2z′

× Jμ(�z)
[

2ρ2
0

h̄vS

δμνδ2(�z − �z′)
]

J ν(�z′)

+
∫

d2z

[
iN

2m∑
i=1

λiε
μα∂αG(�zi − �z)

]
Jμ(�z)

}
, (23)

where λi = 1 for 1 � i � m and λi = −1 for n+ 1 � i � 2m and G(�z) is the Euclidian Green
function of the two-dimensional (2D) free massless scalar theory, which appears naturally
since the expansion in powers of the cosine term is an expansion around such theory.

We note at this point that, should we integrate the above expression over Jμ, we would
obtain the usual Coulomb gas representation for the vacuum functional of the SG theory [21].
Conversely, the expression for the generating functional of current correlators can be obtained
by the usual procedure of adding a linear coupling with a source Kμ in the exponent of the
integrand in the previous expression, namely,

Z[Kμ] = N
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi

∫
DJμ exp

{
−1

2

∫
d2z d2z′

× Jμ(�z)
[

2ρ2
0

h̄vS

δμνδ2(�z − �z′)
]

J ν(�z′)

+
∫

d2z

[
iN

2m∑
i=1

λiε
μα∂αG(�zi − �z) +

Kμ

h̄vS

]
Jμ(�z)

}
. (24)

Z[Kμ] is the desired generating functional of Jμ correlators. Indeed, we have

〈Jμ(�x)J ν(�y)〉 = (h̄vS)
2

Z
δ2Z[Kμ]

δKμ(�x)δKν(�y)

∣∣∣∣
Kμ=0

. (25)

7
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Now, integrating (24) in Jμ, we get

Z[Kμ] =
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi exp

{
1

2

∫
d2z d2z′

[
iN

2m∑
i=1

λiε
μα∂αG(�zi − �z) +

Kμ

h̄vS

]

×
[
h̄vS

2ρ2
0

δμνδ2(�z − �z′)
][

iN
2m∑
j=1

λjε
νβ∂β

′G(�zj − �z′) +
Kν

′

h̄vS

]}

=
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi exp

{
−N2h̄vS

4ρ2
0

2m∑
i=1

λi

2m∑
j=1

λjG(�zi − �zj )

}

× exp

{
1

4ρ2
0h̄vS

∫
d2z d2z′Kμ(�z)δ2(�z − �z′)Kμ(�z′)

+
iN

2ρ2
0

2m∑
i=1

λi

∫
d2z εμα∂αG(�zi − �z)Kμ(�z)

}
. (26)

Evaluating the functional derivatives in (25), we obtain

〈Jμ(�x)J ν(�y)〉 = Z−1
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi exp

{
−N2h̄vS

4ρ2
0

2m∑
i=1

λi

2m∑
j=1

λjG(�zi − �zj )

}

×
{

h̄vS

2ρ2
0

δμνδ2(�x − �y) − N2(h̄vS)
2

4ρ4
0

2m∑
j=1

λjG(�zj )

×
2m∑
i=1

λi

(
δμν∂(y)

α ∂(x)
α − ∂(y)

μ ∂(x)
ν

)
G(�zi + (�x − �y))

}
, (27)

where we have made the shift of variable �zi(j) → �zi(j) − �x.
We now perform the Fourier transform in the variable �χ ≡ �x − �y, arriving at

〈JμJ ν〉(�k) = Z−1
∞∑

m=0

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

d2zi exp

{
−N2h̄vS

4ρ2
0

2m∑
i=1

λi

2m∑
j=1

λjG(�zi − �zj )

}

×
{

h̄vS

2ρ2
0

δμν − N2(h̄vS)
2

4ρ4
0

2m∑
j=1

λjG(�zj )

{
2m∑
i=1

λi e−i�k·�zi

(
δμν�k2 − kμkν

�k2

) }}
,

(28)

where �k ≡ (k, ω) and we used the fact that∫
d2χ

(
δμν∂(y)

α ∂(x)
α − ∂(y)

μ ∂(x)
ν

)
G(�χ + �zi) ei�k· �χ = e−i�k·�zi

(
δμν�k2 − kμkν

�k2

)
. (29)

From (28) we can get 〈J iJ j 〉ret(ω, k), by following the prescription given in [18], for the
retarded Green function, which includes the change of variables (recalling that �z ≡ (z, τ ))

iτ → −vSt, iω → ω

vS

+ iδ, (30)

and the limit δ → 0. The soliton conductivity, then, is given by

σs = lim
δ→0

lim
ω→0

lim
k→0

1

ω
Im[〈JJ 〉ret(ω, k)]. (31)

8
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Taking the above limits, we obtain, after some algebra

σs = Z−1 N2(h̄vS)
2

4ρ4
0

∞∑
m=1

( γρN
0

h̄vS

)2m

(m!)2

∫ 2m∏
i=1

(ivS dti)(dzi)

× exp

⎧⎨
⎩−N2h̄vS

4ρ2
0

2m∑
i=1

λi

2m∑
j=1

λjG(�zi − �zj )

⎫⎬
⎭

⎧⎨
⎩

2m∑
j=1

λjG(�zj )

⎫⎬
⎭

{
2m∑
i=1

λiti

}
.

(32)

The non-transverse part of (28) is a non-physical ‘zero-point’ term, which must be
subtracted from the current correlator. Anyway it would not contribute to the conductivity
because it is real.

The temperature dependence of the soliton conductivity may now be obtained by the usual
methodology, through which we are led to the version of (32) having finite integration regions
0 < τi < β (β = h̄vS/kBT ) in the Euclidian time,

σE
s (T ) = iσs(T ) = −iZ−1

vS

N2(h̄vS)
2

4ρ4
0

∞∑
m=1

( γρN
0

h̄vS

)2m

(m!)2

∫ h̄vS
kB T

0

∫ ∞

−∞

2m∏
i=1

dτi dzi

× exp

{
−N2h̄vS

4ρ2
0

2m∑
i=1

λi

2m∑
j=1

λjGT (�zi − �zj )

}{
2m∑
j=1

λjGT (�zj )

}{
2m∑
i=1

λiτi

}
.

(33)

In the above expression, the free massless Green’s function has been replaced by the
corresponding function at a finite temperature T, namely, GT (�z) (�z ≡ (z, τ )). This is a
natural consequence of the frequency quantization in the presence of a finite interval for τ .

The thermal Euclidian Green’s function of the 2D free massless scalar theory in coordinate
space has been evaluated in [22] and is given by

GT (�z) = − 1

4π
ln

{
μ2

0β
2

π2

[
cosh

(
2πkBT

h̄vS

z

)
− cos

(
2πkBT

h̄vS

τ

)]}
. (34)

Furthermore, the one-dimensional electrical conductivity is related to the quantum soliton
conductivity presented in (33) by

σe =
(

e2vS

h̄

)
σs. (35)

In order to obtain a result that could be compared with experimental data, i.e., the three-
dimensional electrical conductivity, we must divide the above expression by the cross-section
area of the polyacetylene fibers, namely, A 	 π × 104 Å

2
[23]. Then, we have

σ = σe

A
. (36)

In what follows, we will explicitly demonstrate that equation (33) yields an exactly
vanishing quantum soliton conductivity. First, let us change our notation by defining

�zi =
{

�z+
i ≡ (

z+
i , τ

+
i

)
, for 1 � i � m;

�z−
i ≡ (

z−
i , τ−

i

)
, for m + 1 � i � 2m.

(37)
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Using the above notation and making the change of variables τ
+(−)
i → ( 2πkBT

h̄vS

)
τ

+(−)
i , we

may then rewrite equation (33) as

σE
s (T ) = iσs(T ) = −iZ−1

vS

N2(h̄vS)
2

4ρ4
0

∞∑
m=1

( γρN
0

h̄vS

)2m

(m!)2

(
h̄vS

2πkBT

)2m+1

×
(

m∏
i=1

∫ 2π

0
dτ +

i

∫ 2π

0
dτ−

i

)
�m

(
τ +

1 , . . . , τ +
m; τ−

1 , . . . , τ−
m

)
, (38)

where

�m

(
τ +

1 , . . . , τ +
m; τ−

1 , . . . , τ−
m

) =
{

m∑
i=1

(
τ +
i − τ−

i

)} (
m∏

i=1

∫ ∞

−∞
dz+

i

∫ ∞

−∞
dz−

i

)

× exp

⎧⎨
⎩−N2h̄vS

4ρ2
0

m∑
i,j=1

[
GT

(�z+
i − �z+

j

)
+ GT

(�z−
i − �z−

j

)

−GT

(�z+
i − �z−

j

) − GT

(�z−
i − �z+

j

)]⎫⎬⎭
⎧⎨
⎩

m∑
j=1

[
GT

(�z+
j

) − GT

(�z−
j

)]⎫⎬⎭ , (39)

in which, after re-scaling τ ,

GT (�z) = − 1

4π
ln

{
μ2

0β
2

π2

[
cosh

(
2πkBT

h̄vS

z

)
− cos τ

]}
. (40)

We will now show that the quantum soliton conductivity vanishes exactly. For this, we
make the change of variables τ

+(−)
i → 2π − τ

+(−)
i in the τ -integrals in (38). Since

�m

(
2π − τ +

1 , . . . , 2π − τ +
m; 2π − τ−

1 , . . . , 2π − τ−
m

)
= −�m

(
τ +

1 , . . . , τ +
m; τ−

1 , . . . , τ−
m

)
, (41)

the announced result immediately follows.

5. Conclusion

The application of a general method of soliton quantization, based on order–disorder duality,
to a Z(2) symmetric complex extension of the effective field theory for the dimerization field
of the TLM model for polyacetylene has yielded an exactly vanishing result for the quantum
soliton conductivity. This strongly suggests that dynamic solitons are not the charge carriers
in polyacetylene in the intermediate doping regime. The natural candidates are polarons.
However, as it happens in the case of solitons, which were studied in the present work, a
full quantum treatment is required in order to derive a reliable expression for the polaron
conductivity as a function of the temperature. We are presently investigating the quantum
polaronic conductivity in this system.
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